Skip to content

excitation Module

Protocol for an excitation (i.e. state or level) distribution in energy. Predefined distributions available are normal or uniform.

ExcitationBreitWigner

Represents the sampling parameters for a nuclear excitation with the energy sampled from the relativistic Breit-Wigner distribution.

Beware that this excitation class is slower than the others because it uses scipy for its relativistic Breit Wigner distribution.

Parameters:

Name Type Description Default
rest_mass float

The rest mass of the nucleus that is excited in MeV.

required
centroid float

The state mean/centroid value in MeV.

required
width float

Width of the state in MeV.

required

Attributes:

Name Type Description
rest_mass float

The rest mass of the nucleus that is excited in MeV.

centroid float

The state mean/centroid value in MeV.

width float

Width of the state in MeV.

Methods:

Name Description
sample

Sample the energy distribution of the excitation.

Source code in src/attpc_engine/kinematics/excitation.py
class ExcitationBreitWigner:
    """Represents the sampling parameters for a nuclear excitation with the energy
    sampled from the relativistic Breit-Wigner distribution.

    Beware that this excitation class is slower than the others because it uses
    scipy for its relativistic Breit Wigner distribution.

    Parameters
    ----------
    rest_mass: float
        The rest mass of the nucleus that is excited in MeV.
    centroid: float
        The state mean/centroid value in MeV.
    width: float
        Width of the state in MeV.

    Attributes
    ----------
    rest_mass: float
        The rest mass of the nucleus that is excited in MeV.
    centroid: float
        The state mean/centroid value in MeV.
    width: float
        Width of the state in MeV.

    Methods
    -------
    sample(rng)
        Sample the energy distribution of the excitation.
    """

    def __init__(
        self,
        rest_mass: float,
        centroid: float,
        width: float,
    ):
        self.rest_mass = rest_mass
        self.centroid = centroid
        self.width = width

    def sample(self, rng: Generator) -> float:
        """Sample the energy distribution of the excitation.

        Parameters
        ----------
        rng: numpy.random.Generator
            The random number generator

        Returns
        -------
        float
            The sampled value
        """
        rho = (self.rest_mass + self.centroid) / self.width
        total_energy = rel_breitwigner.rvs(rho, scale=self.width, random_state=rng)
        excitation_energy = total_energy - self.rest_mass
        return excitation_energy

sample(rng)

Sample the energy distribution of the excitation.

Parameters:

Name Type Description Default
rng Generator

The random number generator

required

Returns:

Type Description
float

The sampled value

Source code in src/attpc_engine/kinematics/excitation.py
def sample(self, rng: Generator) -> float:
    """Sample the energy distribution of the excitation.

    Parameters
    ----------
    rng: numpy.random.Generator
        The random number generator

    Returns
    -------
    float
        The sampled value
    """
    rho = (self.rest_mass + self.centroid) / self.width
    total_energy = rel_breitwigner.rvs(rho, scale=self.width, random_state=rng)
    excitation_energy = total_energy - self.rest_mass
    return excitation_energy

ExcitationDistribution

Bases: Protocol

Definition of a nuclear excitation with a specified energy distribution

Methods:

Name Description
sample

Sample the distribution

Source code in src/attpc_engine/kinematics/excitation.py
class ExcitationDistribution(Protocol):
    """Definition of a nuclear excitation with a specified energy
    distribution

    Methods
    -------
    sample(rng)
        Sample the distribution
    """

    def sample(self, rng: Generator) -> float:  # type: ignore
        """Sample the energy distribution of the excitation.

        Parameters
        ----------
        rng: numpy.random.Generator
            The random number generator

        Returns
        -------
        float
            The sampled value
        """
        pass

sample(rng)

Sample the energy distribution of the excitation.

Parameters:

Name Type Description Default
rng Generator

The random number generator

required

Returns:

Type Description
float

The sampled value

Source code in src/attpc_engine/kinematics/excitation.py
def sample(self, rng: Generator) -> float:  # type: ignore
    """Sample the energy distribution of the excitation.

    Parameters
    ----------
    rng: numpy.random.Generator
        The random number generator

    Returns
    -------
    float
        The sampled value
    """
    pass

ExcitationGaussian

Represents the sampling parameters for a nuclear excitation with the energy sampled as a gaussian distribution.

Parameters:

Name Type Description Default
centroid float

The state mean/centroid value in MeV.

0.0
width float

The state FWHM value in MeV.

0.0

Attributes:

Name Type Description
centroid float

The state mean/centroid value in MeV

width float

The state FWHM value in MeV

sigma float

The state std. deviation in MeV

Methods:

Name Description
sample

Sample the energy distribution of the excitation.

Source code in src/attpc_engine/kinematics/excitation.py
class ExcitationGaussian:
    """Represents the sampling parameters for a nuclear excitation with the energy
    sampled as a gaussian distribution.

    Parameters
    ----------
    centroid: float
        The state mean/centroid value in MeV.
    width: float
        The state FWHM value in MeV.

    Attributes
    ----------
    centroid: float
        The state mean/centroid value in MeV
    width: float
        The state FWHM value in MeV
    sigma: float
        The state std. deviation in MeV

    Methods
    -------
    sample(rng)
        Sample the energy distribution of the excitation.
    """

    def __init__(
        self,
        centroid: float = 0.0,
        width: float = 0.0,
    ):
        self.centroid = centroid
        self.width = width  # FWHM
        self.sigma = self.width / 2.355

    def sample(self, rng: Generator) -> float:
        """Sample the energy distribution of the excitation.

        Parameters
        ----------
        rng: numpy.random.Generator
            The random number generator

        Returns
        -------
        float
            The sampled value
        """
        return rng.normal(self.centroid, self.sigma)

sample(rng)

Sample the energy distribution of the excitation.

Parameters:

Name Type Description Default
rng Generator

The random number generator

required

Returns:

Type Description
float

The sampled value

Source code in src/attpc_engine/kinematics/excitation.py
def sample(self, rng: Generator) -> float:
    """Sample the energy distribution of the excitation.

    Parameters
    ----------
    rng: numpy.random.Generator
        The random number generator

    Returns
    -------
    float
        The sampled value
    """
    return rng.normal(self.centroid, self.sigma)

ExcitationUniform

Represents the sampling parameters for a nuclear excitation with the energy sampled as a flat distribution.

Parameters:

Name Type Description Default
min_value float

The minimum value of the range.

0.0
max_value float

The maximum value of the range.

0.0

Attributes:

Name Type Description
min_value float

The minimum value of the range

max_value float

The maximum value of the range

Methods:

Name Description
sample

Sample the energy distribution of the excitation.

Source code in src/attpc_engine/kinematics/excitation.py
class ExcitationUniform:
    """Represents the sampling parameters for a nuclear excitation with the energy
    sampled as a flat distribution.

    Parameters
    ----------
    min_value: float
        The minimum value of the range.
    max_value: float
        The maximum value of the range.

    Attributes
    ----------
    min_value: float
        The minimum value of the range
    max_value: float
        The maximum value of the range

    Methods
    -------
    sample(rng)
        Sample the energy distribution of the excitation.
    """

    def __init__(
        self,
        min_value: float = 0.0,
        max_value: float = 0.0,
    ):
        self.min_value = min_value
        self.max_value = max_value

    def sample(self, rng: Generator) -> float:
        """Sample the energy distribution of the excitation.

        Parameters
        ----------
        rng: numpy.random.Generator
            The random number generator

        Returns
        -------
        float
            The sampled value
        """
        return rng.uniform(self.min_value, self.max_value)

sample(rng)

Sample the energy distribution of the excitation.

Parameters:

Name Type Description Default
rng Generator

The random number generator

required

Returns:

Type Description
float

The sampled value

Source code in src/attpc_engine/kinematics/excitation.py
def sample(self, rng: Generator) -> float:
    """Sample the energy distribution of the excitation.

    Parameters
    ----------
    rng: numpy.random.Generator
        The random number generator

    Returns
    -------
    float
        The sampled value
    """
    return rng.uniform(self.min_value, self.max_value)