clusterize Module
The clusterize module describes the methods used to convert a raw point cloud into a trajectory cluster.
cleanup_clusters(clusters, params, labels)
Converts the LabeledClouds to Clusters
In this conversion, the LocalOutlierFactor algorithm is applied to the data to remove any spurious points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
list[LabeledCloud]
|
clusters to clean |
required |
params |
ClusterParameters
|
Configuration parameters controlling the clustering algorithms |
required |
labels |
ndarray
|
The cluster label for each point in the original point cloud |
required |
Returns:
Type | Description |
---|---|
tuple[list[Cluster], ndarray]
|
A two element tuple, the first the list of cleaned clusters, the second being an updated list of labels for each point in the point cloud |
Source code in src/spyral/core/clusterize.py
form_clusters(pc, params)
Apply the HDBSCAN clustering algorithm to a PointCloud
Analyze a point cloud, and group the points into clusters which in principle should correspond to particle trajectories. This analysis revolves around the HDBSCAN clustering algorithm implemented in scikit-learn See their description for details. We trim illegal (out-of-bounds) points from the point cloud, and cluster on spatial dimensions (x,y,z). Z is rescaled to match the X-Y scale to avoid over-emphasizing separation in Z in the clustering algorithm. The minimum size of a cluster is scaled off of the size of the original point cloud.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pc |
PointCloud
|
The point cloud to be clustered |
required |
params |
ClusterParameters
|
Configuration parameters controlling the clustering algorithms |
required |
Returns:
Type | Description |
---|---|
tuple[list[LabeledCloud], ndarray]
|
Two element tuple, the first being a ist of clusters found by the algorithm with labels the second being an array of length of the point cloud with each element conatining that point's label. |
Source code in src/spyral/core/clusterize.py
join_clusters(clusters, params, labels)
Detect which joining algorithm to use and dispatch
Source code in src/spyral/core/clusterize.py
join_clusters_continuity(clusters, params, labels)
Join clusters until either only one cluster is left or no clusters meet the criteria to be joined together.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
list[LabeledCloud]
|
the set of clusters to examine |
required |
params |
ClusterParameters
|
contains parameters controlling the joining algorithm |
required |
labels |
ndarray
|
The cluster label for each point in the original point cloud |
required |
Returns:
Type | Description |
---|---|
tuple[list[LabeledCloud], ndarray]
|
A two element tuple, the first the list of joined clusters, the second being an updated list of labels for each point in the point cloud |
Source code in src/spyral/core/clusterize.py
join_clusters_continuity_step(clusters, params, labels)
A single step of joining clusters
Combine clusters based on the amount of overlap between circles fit to their x-y (pad plane) projection. This is necessary because often times tracks are fractured or contain regions of varying density which causes clustering algorithms to separate them.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
list[LabeledCloud]
|
the set of clusters to examine |
required |
params |
ClusterParameters
|
contains the parameters controlling the joining algorithm (max_center_distance) |
required |
labels |
ndarray
|
The cluster label for each point in the original point cloud |
required |
Returns:
Type | Description |
---|---|
tuple[list[LabeledCloud], ndarray]
|
A two element tuple, the first the list of joined clusters, the second being an updated list of labels for each point in the point cloud |
Source code in src/spyral/core/clusterize.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
|
join_clusters_overlap(clusters, params, labels)
Join clusters until either only one cluster is left or no clusters meet the criteria to be joined together.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
list[LabeledCloud]
|
the set of clusters to examine |
required |
params |
ClusterParameters
|
contains parameters controlling the joining algorithm |
required |
labels |
ndarray
|
The cluster label for each point in the original point cloud |
required |
Returns:
Type | Description |
---|---|
tuple[list[LabeledCloud], ndarray]
|
A two element tuple, the first the list of joined clusters, the second being an updated list of labels for each point in the point cloud |
Source code in src/spyral/core/clusterize.py
join_clusters_overlap_step(clusters, params, labels)
A single step of joining clusters
Combine clusters based on the amount of overlap between circles fit to their x-y (pad plane) projection. This is necessary because often times tracks are fractured or contain regions of varying density which causes clustering algorithms to separate them.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
clusters |
list[LabeledCloud]
|
the set of clusters to examine |
required |
params |
ClusterParameters
|
contains the parameters controlling the joining algorithm (max_center_distance) |
required |
labels |
ndarray
|
The cluster label for each point in the original point cloud |
required |
Returns:
Type | Description |
---|---|
tuple[list[LabeledCloud], ndarray]
|
A two element tuple, the first the list of joined clusters, the second being an updated list of labels for each point in the point cloud |
Source code in src/spyral/core/clusterize.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|